《两角和与差的正弦、余弦和正切公式》教案
- 资源简介:
约1110字。
§3.1 两角和与差的正弦、余弦和正切公式
一、课标要求:
本节的中心内容是建立相关的十一个公式,通过探索证明和初步应用,体会和认识公式的特征及作用.
二、编写意图与特色
本节内容可分为四个部分,即引入,两角差的余弦公式的探索、证明及初步应用,和差公式的探索、证明和初步应用,倍角公式的探索、证明及初步应用.
三、教学重点与难点
1. 重点:引导学生通过独立探索和讨论交流,导出两角和差的三角函数的十一个公式,并了解它们的内在联系,为运用这些公式进行简单的恒等变换打好基础;
2. 难点:两角差的余弦公式的探索与证明.
3.1.1 两角差的余弦公式
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1. 教学重点:通过探索得到两角差的余弦公式;
2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1. 学法:启发式教学
2. 教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道 , ,由此我们能否得到 大家可以猜想,是不是等于 呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角 的终边与单位圆的交点为 , 等于角 与单位圆交点的横坐标,也可以用角 的余弦线来表示,大家思考:怎样构造角 和角 ?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索 与 、 、 、 之间的关系,由此得到 ,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.
思考: , ,再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求 、 的值.
解:分析:把 、 构造成两个特殊角的和、差.