云南省2010届高三数学二轮复习专题(一)
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约2520字。 云南省2010届高三数学二轮复习专题(一)
题目 高中数学复习专题讲座对集合的理解及集合思想应用的问题
高考要求
集合是高中数学的基本知识,为历年必考内容之一,主要考查对集合基本概念的认识和理解,以及作为工具,考查集合语言和集合思想的运用 本节主要是帮助考生运用集合的观点,不断加深对集合概念、集合语言、集合思想的理解与应用
重难点归纳
1 解答集合问题,首先要正确理解集合有关概念,特别是集合中元素的三要素;对于用描述法给出的集合{x|x∈P},要紧紧抓住竖线前面的代表元素x以及它所具有的性质P;要重视发挥图示法的作用,通过数形结合直观地解决问题
2 注意空集 的特殊性,在解题中,若未能指明集合非空时,要考虑到空集的可能性,如A B,则有A= 或A≠ 两种可能,此时应分类讨论
典型题例示范讲解
例1设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C= ,证明此结论
命题意图 本题主要考查考生对集合及其符号的分析转化能力,即能从集合符号上分辨出所考查的知识点,进而解决问题
知识依托 解决此题的闪光点是将条件(A∪B)∩C= 转化为A∩C= 且B∩C= ,这样难度就降低了
错解分析 此题难点在于考生对符号的不理解,对题目所给出的条件不能认清其实质内涵,因而可能感觉无从下手
技巧与方法 由集合A与集合B中的方程联立构成方程组,用判别式对根的情况进行限制,可得到b、k的范围,又因b、k∈N,进而可得值
解 ∵(A∪B)∩C= ,∴A∩C= 且B∩C=
∵ ∴k2x2+(2bk-1)x+b2-1=0
∵A∩C=
∴Δ1=(2bk-1)2-4k2(b2-1)<0
∴4k2-4bk+1<0,此不等式有解,
其充要条件是16b2-16>0,
即 b2>1 ①
∵
∴4x2+(2-2k)x+(5+2b)=0
∵B∩C= ,∴Δ2=(1-k)2-4(5-2b)<0
∴k2-2k+8b-19<0, 从而8b<20,