2015年各地中考数学真题精选汇编:规律探索
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约11290字。
规律探索
一. 选择题
1.(2015湖南邵阳第10题3分)如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是( )
A. 2015π B. 3019.5π C. 3018π D. 3024π
考点: 旋转的性质;弧长的计算..
专题: 规律型.
分析: 首先求得每一次转动的路线的长,发现每4次循环,找到规律然后计算即可.
解答: 解:转动一次A的路线长是: ,
转动第二次的路线长是: ,
转动第三次的路线长是: ,
转动第四次的路线长是:0,
转动五次A的路线长是: ,
以此类推,每四次循环,
故顶点A转动四次经过的路线长为: +2π=6π,
2015÷4=503余3
顶点A转动四次经过的路线长为:6π×504=3024π.
故选:D.
点评: 本题主要考查了探索规律问题和弧长公式的运用,发现规律是解决问题的关键.
2.(2015湖北荆州第10题3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现有等式Am=(i,j)表示正奇数m是第i组第j个数(从左往右数),如A7=(2,3),则A2015=( )
A. (31,50) B. (32,47) C. (33,46) D. (34,42)
考点: 规律型:数字的变化类.
分析: 先计算出2015是第1008个数,然后判断第1008个数在第几组,再判断是这一组的第几个数即可.
解答: 解:2015是第 =1008个数,
设2015在第n组,则1+3+5+7+…+(2n﹣1)≥1008,
即 ≥1008,
解得:n≥ ,
当n=31时,1+3+5+7+…+61=961;
当n=32时,1+3+5+7+…+63=1024;
故第1008个数在第32组,
第1024个数为:2×1024﹣1=2047,
第32组的第一个数为:2×962﹣1=1923,
则2015是( +1)=47个数.
故A2015=(32,47).
故选B.
点评: 此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.
3.(2015湖北鄂州第10题3分)
在平面直角坐标系中,正方形A1B1C1D1 、D1E1E2B2 、A2B2C2D2 、D2E3E4B3 、A3B3C3D3 ……按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3……在x轴上,已知正方形A1B1C1D1 的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3……则正方形A2015B2015C2015D2015的边长是( )
A. B. C. D.
【答案】D.
考点:1.正方形的性质;2.解直角三角形.
4. (2015•山东威海,第12 题3分)如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,…按这样的规律进行下去,A10B10C10D10E10F10的边长为( )
A. B. C. D.
考点: 正多边形和圆..
专题: 规律型.
分析: 连结OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则△E1OD1为等边三角形,再根据切线的性质得OD2⊥E1D1,于是可得OD2= E1D1= ×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长= ×2,同理可得正六边形A3B3C3D3E3F3的边长=( )2×2,依此规律可得正六边形A10B10C10D10E10F10的边长=( )9×2,然后化简即可.
解答: 解:连结OE1,OD1,OD2,如图,
∵六边形A1B1C1D1E1F1为正六边形,
∴∠E1OD1=60°,
∴△E1OD1为等边三角形,
∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,
∴OD2⊥E1D1,
∴OD2= E1D1= ×2,
∴正六边形A2B2C2D2E2F2的边长= ×2,
同理可得正六边形A3B3C3D3E3F3的边长=( )2×2,
则正六边形A10B10C10D10E10F10的边长=( )9×2= .
故选D.