
高三复习课《建立函数模型解决实际问题》课件(14张ppt)+教案+视频素材共3份(湖北省优质课)(3份打包).rar
22.wmv
建立函数模型解决实际问题.pptx
建立函数模型解决实际问题详案.doc
课题:建立函数模型解决实际问题(复习课)
一、教学设计
1.教学内容解析
本节课是普通高中课程标准实验教科书•数学必修1(人民教育出版社A版),3.2.2 函数模型的应用实例.(高三复习课),属于“事实性知识”,“函数模型的应用实例”是《函数的应用》这一章的核心内容,又是数学与生活实践相互衔接的枢纽.
本节课是学习完几类基本初等函数及函数图像、函数与方程的延续和发展,同时又对学习的函数的图像、性质的一个总结. 它要求学生能够对现实情境中采集的信息借助观察分析,选择恰当的函数模型,结合实际问题解模,这种建立函数模型,刻画现实问题的基本方法是学生必须掌握的,函数建模的方法与思想在现实生活中的应用是非常广泛并且及其重要的.它的出现既强化了学生应用数学的意识,提高了学生应用数学的能力又让学生感受到达到目标并不是一帆风顺的,需要我们有不怕挫折,勇于探索、不断尝试的精神及较强的团队意识.
本节考纲要求①了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.②了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.
教学重点:实现实际问题转化为函数模型;然后解决实际问题,达成认知结构的形成、知识要点的梳理和知识体系的建构以及与相关知识的联系.
2.学生学情诊断
(1)学生具备的认知基础:①基本初等函数的图像和性质;②数与形相结合转化的意识;③初步体会了建立函数模型解决实际问题的过程.
(2)学生欠缺的实际能力:①数与形转化的意识还不够强;②从实际问题中抽象出数学问题的能力;③实际问题背景下解决数学问题的熟练程度不够.
(3)本节课为高三复习课.虽然教材内容为几种函数增长模型的比较与函数模型应用举例,但作为高三第一轮复习课,函数模型不一定局限于高一所学过的幂指对三种,其他章节也都出现过建立函数模型的应用问题.比如数列,不等式,三角函数,导数等.但一节课要想把所有的函数模型都复习到是不现实的.因此只能以一些典型模型为载体,复习建立函数模型解决实际问题的基本方法,让学生在问题情境中加深对建模应用问题的理解.
教学难点:对问题背景信息进行整合,建立最佳函数模型解决实际问题,然后通过分析对实际问题进行反馈.
3.教学标准设置
(1)通过实例探究,学生能将有关知识要点有机地联系在一起,能综合运用所学知识解决实际问题;(2)学生能根据实际问题建立恰当的数学模型,能应用数学建模的思想方法解决实际问题;
(3)学生会采用题中抽知的方式梳理相关知识点,能系统地列出本节内容的特点;
(4)能根据图象和表格等提供的有关信息和数据,建立函数模型,将实际问题抽象为数学问题.
4.教学策略分析
在设定教学目标后基于对教学内容和学生情况的分析,为解决问题采用了如下教学策略.
教学理念 ①倡导积极主动、勇于探索、不怕挫折的学习精神和合作探究的学习方式;②营造一个生动和谐充满人文关怀的教学氛围;③追求合作探究与数学课程有机整合的高效课堂;
教学方法设计