2018年中考数学试题分类汇编考点31:弧长和扇形面积
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共36道小题,约8260字。
2018中考数学试题分类汇编:考点31 弧长和扇形面积
一.选择题(共17小题)
1.(2018•台湾)如图,△ABC中,D为BC的中点,以D为圆心,BD长为半径画一弧交AC于E点,若∠A=60°,∠B=100°,BC=4,则扇形BDE的面积为何?( )
A. B. C. D.
【分析】求出扇形的圆心角以及半径即可解决问题;
【解答】解:∵∠A=60°,∠B=100°,
∴∠C=180°﹣60°﹣100°=20°,
∵DE=DC,
∴∠C=∠DEC=20°,
∴∠BDE=∠C+∠DEC=40°,
∴S扇形DBE= = π.
故选:C.
2.(2018•黄石)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则 的长为( )
A. B. C.2π D.
【分析】先计算圆心角为120°,根据弧长公式= ,可得结果.
【解答】解:连接OD,
∵∠ABD=30°,
∴∠AOD=2∠ABD=60°,
∴∠BOD=120°,
∴ 的长= = ,
故选:D.
3.(2018•广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为( )
A. π﹣2 B. π﹣ C. π﹣2 D. π﹣
【分析】连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.
【解答】解:连接OB和AC交于点D,如图所示:
∵圆的半径为2,
∴OB=OA=OC=2,
又四边形OABC是菱形,
∴OB⊥AC,OD= OB=1,
在Rt△COD中利用勾股定理可知:CD= = ,AC=2CD=2 ,
∵sin∠COD= = ,
∴∠COD=60°,∠AOC=2∠COD=120°,
∴S菱形ABCO= OB×AC= ×2×2 =2 ,
S扇形AOC= = ,
则图中阴影部分面积为S菱形ABCO﹣S扇形AOC= π﹣2 ,
故选:C.
4.(2018•自贡)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是( )
A. B. C. D.
【分析】根据圆锥的侧面展开图是扇形、扇形面积公式列出关系式,根据反比例函数图象判断即可.
【解答】解:由题意得, ×2πR×l=8π,
则R= ,
故选:A.
5.(2018•淄博)如图,⊙O的直径AB=6,若∠BAC=50°,则劣弧AC的长为( )
A.2π B. C. D.
【分析】先连接CO,依据∠BAC=50°,AO=CO=3,即可得到∠AOC=80°,进而得出劣弧AC的长为 = .
【解答】解:如图,连接CO,
∵∠BAC=50°,AO=CO=3,
∴∠ACO=50°,
∴∠AOC=80°,
∴劣弧AC的长为 = ,
故选:D.
6.(2018•德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为( )