2018年各地中考数学最新解析版试卷分类汇编:矩形、菱形与正方形
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
共30道小题,约36420字。
矩形菱形与正方形
一.选择题
1. (2018•湖北江汉油田、潜江市、天门市、仙桃市•3分)如图,正方形ABCD中,AB=6,G是BC的中点.将△ABG沿AG对折至△AFG,延长GF交DC于点E,则DE的长是( )
A.1 B.1.5 C.2 D.2.5
【分析】根据翻折变换的性质和正方形的性质可证Rt△AFE≌Rt△ADE;在直角△ECG中,根据勾股定理即可求出DE的长.
【解答】解:∵AB=AD=AF,∠D=∠AFE=90°,
在Rt△ABG和Rt△AFG中,
∵ ,
∴Rt△AFE≌Rt△ADE,
∴EF=DE,
设DE=FE=x,则EC=6﹣x.
∵G为BC中点,BC=6,
∴CG=3,
在Rt△ECG中,根据勾股定理,得:(6﹣x)2+9=(x+3)2,
解得x=2.
则DE=2.
故选:C.
【点评】本题考查了翻折变换,解题的关键是掌握翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理.
2.(2018•江苏宿迁•3分)如图,菱形ABCD的对角线AC.BD相交于点O,点E为边CD的中点,若菱形ABCD的周长为16,∠BAD=60°,则△OCE的面积是( )
A. B. 2 C. D. 4
【答案】A
【分析】根据菱形的性质得菱形边长为4,AC⊥BD,由一个角是60度的等腰三角形是等边三角形得△ABD是等边三角形;在Rt△AOD中,根据勾股定理得AO=2 ,AC=2AO=4 ,根据三角形面积公式得S△ACD=OD•AC=4 ,根据中位线定理得OE∥AD,根据相似三角形的面积比等于相似比继而可求出△OCE的面积.
【详解】∵菱形ABCD的周长为16,∴菱形ABCD的边长为4,
∵∠BAD=60°,∴△ABD是等边三角形,
又∵O是菱形对角线AC.BD的交点,∴AC⊥BD,
在Rt△AOD中,∴AO= ,∴AC=2AO=4 ,∴S△ACD=OD•AC=×2×4 =4 ,
又∵O、E分别是中点,∴OE∥AD,∴△COE∽△CAD,∴ ,∴ ,
∴S△COE=S△CAD=×4 = ,
故选A.
【点睛】本题考查了相似三角形的判定与性质,等边三角形的判定与性质,勾股定理,菱形的性质,结合图形熟练应用相关性质是解题的关键.
3.(2018•江苏无锡•3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值( )
A.等于 B.等于
C.等于 D.随点E位置的变化而变化
【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.
【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴ = = .
设EH=3x,AH=4x,∴HG=GF=3x,
∴tan∠AFE=tan∠FAG= = = .
故选:A.
【点评】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE的正切值转化为求∠FAG的正切值来解答的.
4.(2018•江苏淮安•3分)如图,菱形ABCD的对角线AC.BD的长分别为6和8,则这个菱形的周长是( )
A.20 B.24 C.40 D.48
【分析】由菱形对角线的性质,相互垂直平分即可得出菱形的边长,菱形四边相等即可得出周长.
【解答】解:由菱形对角线性质知,AO= AC=3,BO= BD=4,且AO⊥BO,
则AB= =5,故这个菱形的周长L=4AB=20.
故选:A.
【点评】本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键,难度一般.
5.(2018•江苏淮安•3分)如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形AnBnCnDn的面积是 ( )n﹣1 .
【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.
【解答】解:∵直线l为正比例函数y=x的图象,
∴∠D1OA1=45°,
∴D1A1=OA1=1,
∴正方形A1B1C1D1的面积=1=( )1﹣1,
由勾股定理得,OD1= ,D1A2= ,
∴A2B2=A2O= ,
∴正方形A2B2C2D2的面积= =( )2﹣1,
同理,A3D3=OA3= ,
∴正方形A3B3C3D3的面积= =( )3﹣1,
…
由规律可知,正方形AnBnCnDn的面积=( )n﹣1,
故答案为:( )n﹣1.
【点评】本题考查的是正方形的性质、一次函数图象上点的坐标特征,根据一次函数解析式得到∠D1OA1=45°,正确找出规律是解题的关键.
6.(2018•山东烟台市•3分)对角线长分别为6和8的菱形ABCD如图所示,点O为对角线的交点,过点O折叠菱形,使B,B′两点重合,MN是折痕.若B'M=1,则CN的长为( )